# NOT RUN {
#Use the flow sample data included in the package to test the hierarchical model
data("Testdataflows")
Test <- Testdataflows
test_samples <- GibbsSampler_hierarchical(y_0T=Test$Bins,
M=Test$M,
Inter = Test$Inter,
alpha_Gamma_rate = Test$alpha_Gamma_rate,
alpha_Gamma_Q = Test$alpha_Gamma_Q,
beta_Gamma_Q = Test$beta_Gamma_Q,
beta_Gamma_rate = Test$beta_Gamma_rate,
alpha_Gamma_Y=Test$alpha_Gamma_Z,
beta_Gamma_Y=Test$beta_Gamma_Z,
B=1,N=5,messages=FALSE)
# Define appropriate new tick labels and colouring intervals
breaks <- data.frame(times=c(0,1800,
3600,5600,
7200,9000),
names=c("14:00","14:30",
"15:00","15:30",
"16:00","16:30"))
colour <- c(0, 480, 1200, 2400,
2520, 3600, 4800, 6000,
7200, 7320, 8400, 9600)
example_plot <- MMPPplot(Sampler_Output=test_samples,
title="Observations Imperial College Data",
xaxis="time [hour]",
breaks=breaks,
colour=colour)
plot(example_plot)
# }
Run the code above in your browser using DataLab